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Abstract—Distributed generation (DG) uses many small on-
site energy harvesting deployments at individual buildings to
generate electricity. DG has the potential to make generation
more efficient by reducing transmission and distribution losses,
carbon emissions, and demand peaks. However, since renewables
are intermittent and uncontrollable, buildings must still rely,
in part, on the electric grid for power. While DG deployments
today use net metering to offset costs and balance local supply
and demand, scaling net metering for intermittent renewables
to a large fraction of buildings is challenging. In this paper,
we explore an alternative approach that combines market-based
electricity pricing models with on-site renewables and modest
energy storage (in the form of batteries) to incentivize DG. We
propose a system architecture and optimization algorithm, called
GreenCharge, to efficiently manage the renewable energy and
storage to reduce a building’s electric bill. To determine when
to charge and discharge the battery each day, the algorithm
leverages prediction models for forecasting both future energy
demand and future energy harvesting. We evaluate GreenCharge
in simulation using a collection of real-world data sets, and
compare with an oracle that has perfect knowledge of future
energy demand/harvesting and a system that only leverages a
battery to lower costs (without any renewables). We show that
GreenCharge’s savings for a typical home today are near 20%,
which are greater than the savings from using only net metering.

I. INTRODUCTION

Buildings today consume more energy (41%) than either
of society’s other broad sectors of energy consumption—
industry (30%) and transportation (29%) [1]. As a result, even
small improvements in building energy efficiency, if widely
adopted, hold the potential for significant impact. The vast
majority (70%) of building energy usage is in the form of
electricity, which, due to environmental concerns, is generated
at “dirty” power plants far from population centers. As a result,
nearly half (47%) of energy use in residential buildings is
lost in electricity transmission and distribution (T&D) from
far-away power plants to distant homes [1]. An important
way to decrease both T&D losses and carbon emissions is
through distributed generation (DG) from many small on-site
renewable energy sources deployed at individual buildings
and homes. Unfortunately, in practice, DG has significant
drawbacks that have, thus far, prevented its widespread adop-
tion. In particular, DG primarily relies on solar panels and
wind turbines that generate electricity intermittently based on
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uncontrollable and changing environmental conditions. Since
the energy consumption density, in kilowatt-hours (kWh) per
square foot, is higher than the energy generation density of
solar and wind deployments at most locations, buildings must
still rely heavily on the electric grid for power.

Another major drawback of DG is that large centralized
power plants benefit from economies-of-scale that cause their
generation costs, even accounting for T&D losses, to be
significantly lower than DG. As a result, today’s DG deploy-
ments rely heavily on net metering—where buildings sell the
unused energy they produce back to the utility company—to
offset their cost relative to grid energy. DG is a much less
financially attractive where net metering is not available. Net
metering laws and regulations vary widely across states—it
is not available in four states and the regulations are weak in
many others [2]. Further, even where available, states typically
place low caps on both the total number of participating
consumers and the total amount of energy contributed per
customer [28]. After exceeding these caps, utilities are no
longer required to accept excess power from DG deployments.
As one example, the state of Washington caps the total number
of participating consumers at 0.25% of all customers. One
reason for the strict laws limiting DG’s contribution is that
injecting significant quantities of power into the grid from
unpredictable renewables at large scales has the potential to
destabilize the grid by making it difficult, or impossible, for
utilities to balance supply and demand. Large baseload power
plants that produce the majority of grid energy are simply not
agile enough to scale their own generation up and down to
offset significant fractions of renewable generation.

Thus far, current laws have not been an issue, since today’s
energy prices do not make DG financially attractive enough
to reach even these low state caps. However, more widespread
adoption of DG is critical to meeting existing goals for
increasing the fraction of environmentally-friendly renewable
energy sources. For example, the Renewables Portfolio Stan-
dard targets 25% of electricity generation from intermittent
renewables [8], while California’s Executive Order S-21-09
in California calls for 33% of generation from renewables
by 2020 [31]. Given current laws, if and when DG becomes
more widespread, buildings will have to look beyond net me-
tering to balance on-site energy generation and consumption,
while also reducing DG’s costs. We envision consumers using
a combination of on-site renewables, on-site battery-based
energy storage, and the electric grid to satisfy their energy
requirements, while also balancing local supply and demand.

In parallel, we envision the adoption of market-based elec-
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tricity pricing providing a new opportunity to recoup the
loss of net metering revenue, while also introducing new
financial incentives for DG where net metering is not available.
Many utilities are transitioning from conventional fixed-rate
pricing models, which charge a flat fee per kilowatt-hour
(kWh), to new market-based schemes, e.g., real-time or time-
of-use pricing, which more accurately reflect electricity’s cost
by raising and lowering prices during peak and off-peak
periods, respectively. Satisfying peak demands is significantly
more expensive (∼10x) than off-peak demands, since peak
demands drive both capital expenses—by dictating the number
of power plants, transmission lines, and substations—and op-
erational expenses—“peaking” generators are generally dirtier
and costlier to operate than baseload generators [19]. For
instance, Illinois already requires utilities to provide residential
customers the option of using hourly electricity prices based
directly on wholesale prices [30], while Ontario charges res-
idential customers based on a time-of-use scheme with three
different price tiers (off-, mid-, and on-peak) each day [26].

The primary contribution of this paper is a new system
architecture and control algorithm, called GreenCharge for
managing on-site renewables, on-site energy storage, and grid
energy in buildings to minimize grid energy costs for market-
based electricity prices. Our system determines both the frac-
tion of power to consume from the grid versus on-site battery-
based energy storage, as well as when and how much to charge
battery-based storage using grid energy. The primary inputs
to our control algorithm are 1) the battery’s current energy
level, 2) a prediction of future solar/wind energy generation,
3) a prediction of future energy consumption patterns, and
4) market-based electricity prices. The output is the amount
of power to consume from the grid, as well as the power
to discharge or charge the battery from renewables or the
grid, over each rate period. We evaluate our system using a
collection of real data sets, including power consumption data
from a real home, energy harvesting data from a solar and
wind deployment, National Weather Service (NWS) forecast
data, and TOU pricing data from Ontario, Canada.

We compare GreenCharge with two other approaches: i)
an approach from initial work, called SmartCharge [23], that
only uses energy storage without renewables to reduce prices
and ii) an oracle with perfect knowledge of future energy
consumption and generation. GreenCharge extends our initial
work on SmartCharge in multiple ways. First, SmartCharge
only optimized prices by determining when and how much
to charge a battery at off-peak hours. GreenCharge extends
this idea to account for intermittent renewable generation,
e.g., by using forecast-based models to predict future en-
ergy harvesting—a major enhancement to SmartCharge. In
addition, this paper includes new material describing our use
of communication protocols in implementing a GreenCharge
prototype, as well as a revised linear programming formulation
and algorithm that accounts for renewable generation. Finally,
our work includes substantial experiments to understand the
impact of adding renewables to SmartCharge. Our results show
that GreenCharge saves an additional 10-15% on electric bills
beyond SmartCharge, which only uses a battery, and is near
the performance of an oracle with perfect future knowledge.
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Fig. 1. A depiction of GreenCharge’s architecture, including its battery
array and charger, DC→AC inverter, solar and/or wind energy sources, power
transfer switch, energy/voltage sensors, and gateway server.

II. GREENCHARGE ARCHITECTURE

Figure 1 depicts GreenCharge’s architecture, which utilizes
a power transfer switch that is able to toggle the power source
for the home’s electrical panel between the grid and a DC→AC
inverter connected to a battery array. On-site solar panels
or wind turbines connect to, and charge, the battery array.
A smart gateway server continuously monitors 1) electricity
prices via the Internet, 2) household consumption via an in-
panel energy monitor, 3) renewable generation via current
transducers, and 4) the battery’s state of charge via voltage
sensors. Our SmartCharge system, which we compare against
in this work, utilizes the same architecture, but does not use
renewables [23].

Before the start of each day, the server solves an opti-
mization problem based on the next day’s expected electric-
ity prices, the home’s expected consumption and generation
pattern, and the battery array’s capacity and current state
of charge, to determine when to switch the home’s power
source between the grid and the battery array. The server also
determines when to charge the battery array when the home
uses grid power. In §VI, we provide a detailed estimate of
GreenCharge’s installation and maintenance costs based on
price quotes for widely-available commercial products.

A. Network Communication and Sensing

One challenge with instantiating GreenCharge’s architecture
is transmitting sensor data about energy consumption, energy
generation, and battery status to GreenCharge’s smart gateway
server in real time. The simplest way to measure energy
consumption and generation is to wrap current transducers
(CT) around wires in the building’s electrical panel. In this
case, two CTs are necessary to cover both legs of a building’s
split leg input power from the grid, as well as a CT for each
connection to a renewable source. Note that CTs use the Hall
Effect [14] for measuring voltage and current, and only require
wrapping a sensor around a wire without cutting any wires.
CTs must be installed in the panel, since this is the only place
in the building that has the incoming grid lines exposed for
sensors. Since electrical panels are often in remote corners of
a building, transmitting readings wirelessly is difficult. While
wired Ethernet is an attractive option, it requires running
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an Ethernet cable from GreenCharge’s gateway server to the
electrical panel. Instead, to overcome wireless interference and
prevent running an Ethernet cable into the panel, GreenCharge
uses a powerline-based communication protocol to transmit
readings to the server.

Multiple types of powerline-based communication protocols
exist. The most common are X10, Insteon, and HomePlug.
X10 is by far the oldest protocol, having been developed in
1975; it is primarily used for controlling applications, which
only requires sending brief, short control messages. Unfor-
tunately, X10 has severe bandwidth limitations (a maximum
of 20bps) and reliability problems, which make it undesirable
for continuous real-time sensing. The bandwidth limitations
alone prevent X10 from being used to continuously sense
multiple data sources. Since powerline is a broadcast network,
the 20bps bandwidth is across all devices. In addition to the
bandwidth limitations, the protocol has no acknowledgements,
so it is impossible to detect packet losses and retransmit. Fur-
ther, powerline noise caused by switched mode power supplies
results in substantial losses with X10 in most buildings. In
our own prototype, we initially used the Energy Detective
(TED) power meter for monitoring electricity consumption
and generation at the electrical panel. However, we discov-
ered that the meter uses an unreliable X10-like protocol that
experiences communication problems while sending data over
the powerline due to sensitivity to noise. While the display
blinks orange when the problems occur, the data masks the
problem by always recording the last power reading as the
current power reading.

Insteon is an improvement to X10 that includes acknowl-
edgements, retransmissions, and optimizations to overcome
powerline noise. However, Insteon still has bandwidth lim-
itations that, in practice, reduce its maximum rate to near
180bps [17]. While useful for controlling devices via the
powerline, it is still insufficient for continuous real-time sens-
ing of multiple data sources. Thus, in our own prototype we
chose a power meter that uses the HomePlug Ethernet-over-
powerline protocol. Unlike Insteon and X10, Homeplug was
initially designed to stream high definition audio and video
data from the Internet to televisions. As a result, it was de-
signed from the outset to support high-bandwidth applications.
HomePlug modems exist that are capable of transmitting up
to 200Mbps. Since HomePlug simply implements Ethernet
over the powerline, it can support a standard TCP stack to
ensure reliable communication. Our prototype uses an eGauge
power meter [11], and uses HomePlug to continuously transmit
power consumption and generation readings over a building’s
powerline to GreenCharge’s gateway server. Below, we discuss
how the server gets current market prices for electricity.

B. Market-based Electricity Pricing

Most utilities still use fixed-rate plans for residential cus-
tomers that charge a flat fee per kilowatt-hour (kWh) at
all times. In the past, market-based pricing plans were not
possible, since the simple electromechanical meters installed
at homes had to be read manually, e.g., once per month, and
were unable to record when homes consumed power. However,
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Fig. 2. Example TOU and hourly market-based rate plans in Ontario and
Illinois, respectively.

utilities are in the process of replacing these old meters with
smart meters that enable them to monitor electricity consump-
tion in real time at fine granularities, e.g., every hour or
less. As a result, utilities are increasingly experimenting with
market-based pricing plans for their residential customers. To
cut electricity bills, GreenCharge relies on residential market-
based pricing that varies the price of electricity within each
day to more accurately reflect its cost. We expect many utilities
to offer such plans in the future.

There are multiple variants of market-based pricing. Fig-
ure 2 shows rates over a single day for both a time-of-use
(TOU) pricing plan used in Ontario, and a real-time pricing
plan used in Illinois. TOU plans divide the day into a small
number of periods with different rates. The price within each
period is known in advance and reset rarely, typically every
month or season. For example, the Ontario Electric Board
divides the day into four periods (7pm-7am, 7am-11am, 11am-
5pm, and 5pm-7pm) and charges either a off-peak-, mid-peak,
or on-peak rate (6.2¢/kWh, 9.2¢/kWh, or 10.8 ¢/kWh) each
period [26]. The long multi-hour periods and well-known rates
enable consumers to plan their usage across reasonable time-
scales and adopt low-cost daily routines, e.g., running the
dishwasher after 7pm each day. However, while TOU pricing
more accurately reflects costs than fixed-rate pricing, it is not
truly market-based since actual prices vary continuously based
on supply and demand.

TOU pricing is a compromise between fixed-rate pricing and
real-time pricing, where prices vary each hour (or less) and
reflect the true market price of electricity. Unfortunately, real-
time pricing complicates planning. Since prices may change
significantly each hour, consumers must continuously monitor
prices and adjust their daily routines, which may now have
different costs on different days. Illinois was the first U.S. state
to require utilities to offer residential consumers the option of
using real-time pricing plans. While some utilities use real-
time prices not known in advance, most utilities use day-
ahead market prices, which are are set one day in advance.
Since utilities purchase most of their electricity in day-ahead
markets, e.g., 98% in New York [25], next-day prices are well-
known.

There are many possible ways for GreenCharge’s gateway
server to monitor prices in real time. In the simplest case,
utilities can provide simple web pages with current prices. For
example, Illinois utilities are already required to do this, e.g.,
www.powersmartpricing.org/chart posts next-day prices each
evening. Utilities may also use explicit protocols to “push”
prices to GreenCharge’s gateway server whenever they change.
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Fig. 3. Example solar harvest data from a day in August.

For example, utilities could run publish/subscribe protocols
that interact with smart meters to broadcast price changes. In
this case GreenCharge’s gateway server could interact with
a building’s local smart meter to discover prices. Authors
in [18], [13] propose to combine IP multicast and publish-
subscribe technologies to scale real-time price broadcast to
millions of users for Ecogrid [9]. When using smart meters,
utilities could disseminate prices using the smart meter’s
communication protocol, e.g., often cellular wireless or wired
powerline, rather than the public Internet.

Transactive control system, presented in [16], proposes an-
other way of price dissemination in smart grids. In transactive
control, responsive demand assets are controlled by a single,
shared, price-like value signal. It defines a hierarchical node
structure and the signal path through these nodes, and includes
the predicted day-ahead price values. Alternatively, IEC 61850
([3]), which has been used between DER (Distributed Energy
Resources) plants for energy and price information exchange,
can be extended for price exchange in smart grids. [22]
presents a survey of a set of existing communication protocols.
The report also analyzes suitability of the surveyed protocols
for their application in real-time price exchange.

GreenCharge is compatible with any method above for
retrieving real-time prices, and works well with both TOU and
real-time pricing plans. In either case, GreenCharge solves the
optimization problem detailed in the next section at the end
of each day to determine when to switch between grid and
battery power to minimize costs, based on next-day prices
and expected next-day consumption. The number of periods
each day—four in Ontario or twenty-four in Illinois—simply
changes a parameter in the optimization’s constraints.

III. GREENCHARGE ALGORITHM

GreenCharge cuts electricity bills by combining on-site
renewable generation with energy storage that stores energy
during low-cost periods for use during high-cost periods. As
discussed in §I, GreenCharge extends our SmartCharge system
that only uses energy storage to cut electricity bills without
renewables. The total possible savings each day is a function
of both the home’s rate plan and its pattern of generation and
consumption. Throughout the paper, we use power data from
a real home we have monitored for the past two years as a
case study to illustrate GreenCharge’s potential benefits. The
home is an average 3 bedroom, 2 bath house in Massachusetts
with 1700 square feet. To measure electricity, we instrument
the home with an eGauge energy meter [11], which installs in
the electrical panel by wrapping two 100A current transducers
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Fig. 4. Example from January 3rd with and without GreenCharge using
Illinois prices from Figure 2.

around each leg of the home’s split-leg incoming power. We
have monitored the home’s power consumption every second
for the past two years. In 2010, the home consumed 8240kWh
at a cost of $1203.53 (or 22.6 kWh/day), while in 2011 it
consumed 9732kWh at a cost of $1339.51 (or 26.7 kWh/day).
The costs are near the $1419 average U.S. home electric bill.
Separately, we have deployed solar panels to study variation
in solar power generation. Figure 3 depicts power generation
from a sunny day.

A. Potential Benefits

To better understand GreenCharge’s potential for savings,
it is useful to consider a worst-case scenario where 100% of
the home’s consumption occurs during the day’s highest rate
period. Figure 4 then compares GreenCharge using renewable
production from Figure 3 with a home has only energy storage
but not renewables (labeled SmartCharge), and home with no
energy storage or renewables. Now consider our home’s hourly
electricity use on January 3rd, 2012, as depicted in Figure 4 in
red. On this day, the home consumed 43.7 kWh, primarily due
to the occupants running multiple laundry loads after returning
from a holiday trip. With Ontario’s TOU plan, if the home had
consumed 100% of the day’s power during the 10.8¢/kWh on-
peak period, and all consumption was shifted to the 6.2¢/kWh
off-peak period, then the maximum savings is 43%, or $2.01
(from $4.72 to $2.71) for the day. Since the home did not
consume 100% of its power during the on-peak period, the
maximum realizable savings (if we shift all of the on-peak and
mid-peak consumption to the off-peak period) is only 30%,
a decrease of $1.14 for the day (from $3.85 to $2.71). In
practice, battery and inverter inefficiencies, which combined
are ∼80% efficient, reduce the savings further, to $0.99 for
the day. Finally, if we then add in the 10.5kW generated by
renewables the savings increases by $0.93 to $1.92. This per-
day savings rate translates to a yearly savings of $702, if the
system achieves it every day.

Real-time pricing plans, as in Illinois, offer even more
potential for savings, since the difference between the highest
and lowest rate is significantly larger than a typical TOU plan.
Of course, energy consumption and generation patterns, as
well as hourly rates vary each day, which may decrease (or
increase) a building’s actual yearly savings. To understand why
energy consumption and generation patterns are important,
consider the following scenario using the Ontario TOU pricing
plan. In Ontario, while GreenCharge may fully charge its
battery array during the lowest rate period (7pm-7am), it may
also consume that stored energy during the day’s first high
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rate period (7am-11am). If the home expects to consume at
least the battery array’s entire usable capacity, even when
accounting for renewable generation, during the day’s second
high rate period (5pm-9pm), it is cost-effective, assuming ideal
batteries, to fully charge the batteries during the mid-rate
period (11am-5pm) when electricity costs are 17% less than
in the high rate period. However, if the home only expects
to use 20% of the battery’s capacity during the subsequent
high rate period, e.g., because renewables will generate some
power during this time, it is only cost-effective to charge the
battery 20% during the mid-rate period, since there will be
an opportunity to charge the battery further (for 33% less
cost) during the next low-rate period. In this case, charging
the battery more than 20% wastes money. Introducing more
price tiers, as in real-time markets, complicates the problem
further. As a result, we frame the problem of minimizing the
daily electricity bill as a linear optimization problem.

B. Problem Formulation

While batteries exhibit numerous limitations (e.g., charg-
ing rate, capacity), inefficiencies (e.g., energy conversion
efficiency, self-discharge), and non-linear relationships (e.g.,
between capacity, lifetime, depth of discharge, discharge rate,
ambient temperature, etc.), GreenCharge’s normal operation
places it at the efficient end of these relationships. The system
mostly charges the battery once a day during the night, which
prevents stratification and extends battery lifetime by limiting
the number of charge-discharge cycles. The self-discharge rate
of valve-regulated absorbed glass mat (VRLA/AGM) lead-
acid batteries (commonly called sealed lead-acid batteries),
estimated at 1-3% per month, is insignificant, amounting
to no more than $13 per year for a 12kWh battery array
with an average electricity price of 10¢/kWh. Sealed lead-
acid batteries are generally 85-95% efficient, while inverters
are 90-95% efficient. For GreenCharge’s battery array and
inverter, we assume an energy conversion efficiency of 80%,
which mirrors the efficiency rating for VRLA/AGM lead-acid
batteries in a recent Department of Energy report on energy
storage technologies [27]. Thus, the batteries waste 1W for
every 4W they are able to store and re-use. Additionally, depth
of discharge (DOD) for sealed lead-acid batteries impacts their
lifetime, i.e., the number of charge-discharge cycles, due to
the crystallization of lead sulfate on the battery’s metal plates.
In our evaluation, we find that a DOD of 45% minimizes
battery costs by balancing lifetime with usable storage capacity
for a typical battery designed for home photovoltaic (PV)
installations, e.g., the Sun Xtender PVX-2580L [32].

The ambient temperature and rate of discharge also have
an impact on usable capacity, according to Peukert’s law. To
maximize lifetime, we expect GreenCharge installations to
reside in a climate-controlled room with a temperature near
25C. Rated capacity is typically based on a C/20 discharge
rate, i.e., the rate of discharge necessary to deplete the battery’s
capacity in 20 hours. A discharge rate higher or lower than
C/20 results in less or more usable capacity, respectively.
The home in our case study has averaged near 1kW per
hour over the last two years, so a 20kWh battery capacity

approaches this rating. As we show in §V, reasonable battery
capacities for GreenCharge with a 45% DOD are near or above
20kWh. Finally, sealed lead-acid batteries are capable of fast
charging up to a C/3 rate, i.e., charges to full capacity in three
hours [21]. In §V, we use a maximum charge rate of C/4 for
the usable storage capacity, which translates to a C/8 rate for
a battery used at 45% DOD. As we show, faster charging rates
are not beneficial, since market-based pricing plans generally
offer long low-rate periods for charging at night.

Given the constraints above, we frame GreenCharge’s linear
optimization problem as follows. The objective is to minimize
a home’s electricity bill using a battery array with a usable
capacity (after accounting for its DOD) of C kWh. We divide
each day into T discrete intervals of length I from 1 to T .
We then denote the power charged to the battery from the
grid during interval i as si, the renewable power charged to
the battery as gi, average renewable power available to the
home as ri, the power discharged from the battery as di, and
the power consumed from the grid as pi. We combine both the
battery array and inverter inefficiency into a single inefficiency
parameter e. Finally, we specify the cost per kWh over the
ith interval as ci, and the amount billed as mi. Formally,
our objective is to minimize

∑T
i=1mi each day, given the

following constraints.

si ≥ 0,∀i ∈ [1, T ] (1)

di ≥ 0,∀i ∈ [1, T ] (2)

gi ≥ 0,∀i ∈ [1, T ] (3)

gi ≤ ri,∀i ∈ [1, T ] (4)

si ≤ C/4,∀i ∈ [1, T ] (5)

gi ≤ C/4,∀i ∈ [1, T ] (6)

i∑
t=1

dt ≤ e ∗
i∑

t=1

st + e ∗
i∑

t=1

gt,∀i ∈ [1, T ] (7)

(

i∑
t=1

st +

i∑
t=1

gt −
i∑

t=1

dt/e) ∗ I ≤ C, ∀i ∈ [1, T ] (8)

mi = (pi + si − di) ∗ I ∗ ci,∀i ∈ [1, T ] (9)

The first second and third constraint ensure the energy
charged to, or discharged from, the battery is non-negative.
The fourth constraint ensures that total renewable energy
charged to the battery is less than or equal to the available
renewable energy. The fifth and sixth constraint limits the bat-
tery’s maximum charging rate. The seventh constraint specifies
that the power discharged from the battery is never greater
than the total power charged to the battery multiplied by the
inefficiency parameter. The eighth constraint states that the
energy stored in the battery array, which is the difference
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Model 12am-7am 7am-11am 11am-5pm 5pm-7pm 7pm-12am Average (%)
SVM-Linear 14.77 27.32 46.72 18.49 47.03 29.5
SVM-RBF 22.44 63.77 71.93 17.84 35.01 42.51
SVM-Polynomial 4.74 4.62 6.48 7.99 5.14 5.75

TABLE I
AVERAGE PREDICTION ERROR (%) OVER 40 DAY SAMPLE PERIOD FOR SVM WITH DIFFERENT KERNEL FUNCTIONS.

between the energy charged to or discharged from the battery
over the previous time intervals, cannot be greater than its
capacity. Finally, the ninth constraint defines the price the
home pays for energy during the ith interval. The objective and
constraints define a linearly constrained optimization problem
that is solvable using standard linear programming techniques.
GreenCharge solves the problem at the beginning of each
day to determine when to switch between grid and battery
power, and when to charge the battery from grid vs renewables.
SmartCharge uses a similar linear programming formulation
without the constraints specific to renewable energy. Since the
approach uses knowledge of next-day consumption and gen-
eration patterns, we next detail techniques for predicting next-
day consumption and generation, and quantify their accuracy
for our case study home.

IV. PREDICTING CONSUMPTION AND GENERATION

As discussed in §III, solving GreenCharge’s linear opti-
mization problem requires a priori knowledge of next day
consumption and generation patterns. We develop a machine
learning based approach to predicting demand, and use an
approach developed in prior work [29] to predict next day
energy harvesting based on weather forecasts. We discuss each
mode in turn.

A. ML-based Demand Prediction

A simple approach to predicting consumption is to use past-
predicts-future models that assume an interval’s consumption
will closely match either that interval’s consumption from
the previous day or the prior interval’s consumption. As we
show, the approach does not work well for the multi-hour
intervals in Ontario’s TOU pricing plan. Instead, we develop
statistical machine learning (ML) techniques to accurately
predict consumption each interval. While our techniques have
numerous applications, e.g., dispatch scheduling in microgrids,
we focus solely on their application to SmartCharge in this
paper.

We experimented with a variety of prediction techniques, in-
cluding Exponentially Weighted Moving Averages (EWMA),
Linear Regression (LR), and Support Vector Machines (SVMs)
with various kernel functions, including Linear, Polynomial,
and Radial Basis Function (RBF) kernels. EWMA is a classic
past-predicts-future model that predicts consumption in the
next interval as a weighted sum of the previous interval’s con-
sumption and an average of all previous intervals’ consump-
tion. More formally, EWMA predicts the energy consumption
for each interval on day k as ÊC(k + 1) = αEC(k) + (1 −
α)ÊC(k), where α is a configurable parameter that alters the
weight applied to the most recent interval versus the past. Note
that since each interval’s power consumption is different, we
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Fig. 5. Predicting energy consumption using the past does not capture day-
to-day variations due to changing weather, weekly routines, holidays, etc.

apply EWMA to each interval independently on a daily basis.
As might be expected, since home consumption patterns vary
largely around mealtimes, we found that predicting consump-
tion based on the preceding interval to be highly inaccurate.

Both LR and SVM are regression techniques that combine
and correlate numerous indicators (or features) of future power
consumption to predict next-day usage. We experimented with
a total of nine features: outdoor temperature and humidity,
month, day of week, previous day power, previous interval
power, as well as whether or not it is a weekend day or
a holiday. We also included the EWMA prediction as an
additional feature. To predict next-day temperature and hu-
midity, we used weather forecasts from the National Weather
Service available from the National Digital Forecast Database
(http://www.nws.noaa.gov/ndfd/). To evaluate our techniques
we used power data collected every second from our case study
home over a period of four months from June to September
2011. For the LR and SVM models, we used the first 70
days of the data set for model training, and the last 40 days
for evaluating the model’s accuracy. We use the LibSVM
library [6] to implement our LR and SVM models. Our SVM
models use the nu-SVR regression algorithm, which we found
always performed better than the ε-SVR algorithm [6]. For
simplicity, we only predict consumption for the Ontario TOU
rate periods in Figure 2.

Before training our model, we employed Correlation-based
Feature Subset Selection (CFSS) to refine the number of
input features [15]. CFSS evaluates the predictive ability of
each individual feature along with the degree of redundancy
between features. We apply CFSS separately for each of
the five intervals, since the pattern of power consumption
varies each interval. CFSS reduces the number of features in
prediction model from nine to: four for 12am-7am, seven for
7am-11am, seven for 11am-5pm, six for 5pm-9pm, and five for
9pm-12am. In general, we find that more features are useful
during periods with high, variable consumption.

We then experimented with multiple variations of LR mod-
els, including least squares and different regularized models
(LASSO, ElasticNet, and Ridge Regression), since we found
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Fig. 6. Average dollar savings per day for both SmartCharge and Green-
Charge in our case study home.

that temperature, humidity, and past data were approximately
linear with respect to power consumption. However, our best
performing LR model (ElasticNet) had an average error of
37%. EWMA performed much better, although Figure 5
demonstrates its limitations in predicting future consumption.
The figure shows actual power consumption each day during
the first interval (12am-7am), as well as EWMA (α = 0.35)
and the SVM-Polynomial model. EWMA is unable to predict
large spikes or dips in consumption before they occur. Instead,
EWMA’s predictions never vary too far from the mean usage.
In contrast to EWMA, the SVM approach is able to partially
predict many of the spikes and dips in consumption. Over
our 40 day testing period, we found that SVM-Polynomial
had an average error of only 5.75%. The SVM model with
the Linear and RBF kernel performed worse than EWMA,
as Table I shows, with a 29.5% and 42.5% average error,
respectively. As a result, in §V we use SVM-Polynomial to
evaluate SmartCharge.

B. Predicting Energy Harvesting from Weather Forecasts

For predicting the harvested solar energy we use the pre-
diction model presented in [29]. For a given solar panel
deployment this model translates the forecasted sky cover, by
National Weather Service (NWS), into solar energy harvesting
prediction. The NWS publishes weather forecast including sky
condition forecast, every hour. The forecast contains predicted
sky condition for next 24 hours. The model computes predicted
solar harvesting power for every hour as:

Power =MaxPower ∗ (1− SkyCondition) (10)

Power in (10) is the predicted solar harvesting power,
MaxPower is the maximum possible solar power that can
be harvested from the given solar panel in a given hour of
day assuming perfectly sunny day, and SkyCondition is the
fraction of sky that is covered with clouds.

V. EXPERIMENTAL EVALUATION

To illustrate GreenCharge’s potential for savings, we use the
home described in §III to evaluate the savings using Ontario’s
TOU rate plans in simulation from Figure 2. While our home
is not located in Ontario, it lies at the same latitude and
experiences a similar climate. Thus, the prices are not entirely
mismatched to our home’s consumption and generation profile.
In our experiments, we vary the pricing plans and battery
characteristics to see how future price trends and battery
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Fig. 8. SmartCharge’s and GreenCharge’s savings as a function of the
charging rate for a 24kWh storage capacity.

technology impact savings. To predict next-day usage, we
use the SVM-Polynomial model described in §IV. Similarly,
to predict next-day generation, we use the forecast-based
model from §IV. Finally, to quantify the optimal savings, we
compare with an oracle that has perfect knowledge of next-day
consumption and generation.

Unless otherwise noted, our experiments use home power
data from the same 40 day period in late summer as the
previous section, and generation data from our own solar panel
installation scaled up to generate equal to the home’s average
power consumption. We use CPLEX, a popular integer and
linear programming solver, to encode and solve GreenCharge’s
(and SmartCharge’s) optimization problem, given next-day
prices and expected consumption levels. Note that we consider
only usable storage capacity in kWh in this section, which is
distinct from (and typically much less than) battery capacity.
In the next section, we discuss the battery capacity necessary
to attain a given storage capacity. As mentioned in §III, we
use an energy conversion efficiency of 80% for the battery and
a C/4 charging rate for the usable storage capacity.

A. Household Savings

Figure 6 shows the average savings per day in USD for
the TOU rate plan over the 40 day period, as a function
of storage capacity, while Figure 7 shows the savings as
a percentage of the total electricity bill. The graphs show
that a storage capacity beyond 30kWh does not significantly
increase savings. Further, smaller storage capacities, such as
12kWh, are also capable of reducing costs, near 10% for
SmartCharge and 20% for GreenCharge. If we extrapolate the
savings over an entire year, we estimate that GreenCharge
with 24kWh of storage is capable of saving $200, while
SmartCharge is capable of saving $100. Finally, the graphs
show that GreenCharge’s performance is close to that of an
oracle with perfect knowledge of future consumption and
generation: mispredictions only cost a few dollars each year
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Fig. 10. Additional savings (in % and $) from sharing 12kWh and 24 kWh
between homes.

with 24kWh storage capacity, or under 10% of the total
savings.

The experiments above assume that we use today’s battery
characteristics and price levels. Of course, a more efficient bat-
tery and inverter would increase the usable storage capacity in
a battery array. As the experiments above indicate, increasing
storage capacity increases the savings up to a 30kWh capacity.
We evaluate the effect of maximum battery charging rate on
home savings using TOU pricing plan over 40 day traces in
presence of 24kWh battery capacity. Figure 8 demonstrates
that the maximum charging rate has a minimal effect on
savings, since the TOU rate plan offers a long period of
relatively low rates during the night for charging. The charging
rate need only be high enough, e.g., a C/10 rate, to charge
the battery over these periods. Figures 9(a) and (b) show
how the savings change if we vary either the average price
(while keeping price ratios constant) or the peak-to-off-peak
price ratio (while keeping the average price constant) for a
24kWh capacity, assuming C/4 charging rate for the usable
storage capacity, for both GreenCharge and SmartCharge.
The graphs demonstrate that, as expected, rising prices or
ratios significantly impact the savings. In the former case, the
relationship is linear, with a doubling of today’s average price
resulting in a doubling of the savings for both GreenCharge
and SmartCharge. Thus, if average electricity prices continue
to rise 5% per year, as in the past, the expected savings for both
systems should also increase at 5% per year. In the latter case,
while the savings rate decreases slowly as the ratio increases,
the savings nearly doubles (up 88%) for both GreenCharge
and SmartCharge if the current ratio increases slightly from
1.6 to 2.

Finally, Figure 10 shows the additional savings homes are
able to realize by sharing battery capacity with neighbors.
Sharing is beneficial when homes exhibit peaks at different
times by allowing them to share the available storage capacity.
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Fig. 12. Demand flattening with Net Metering.

For the experiment, we use power data for a single day from a
pool of 353 additional homes we monitor (described below),
such that each point is an average of twenty runs with a set
of k randomly chosen homes. We report both the additional
dollar and percentage savings per home. We include 90%
confidence intervals for the dollar savings. The experiment
shows that sharing a battery array between homes results in
additional savings as we increase the number of homes. As
expected, more homes require more storage capacity to reap
additional benefits. With 10 homes sharing 24kWh per home,
the additional savings is 25%. However, with 12kWh per home
the percentage savings does not increase beyond 15% when
sharing with more than four homes.

B. Grid Peak Reduction

The purpose of market-based rate plans is to lower peak
electricity usage across the entire grid. We evaluate the poten-
tial grid-scale effect of GreenCharge using power data from
a large sampling of homes. We gather power data at scale
from thousands of in-panel energy meters that anonymously
publish their data to the web. Power consumption trace for
each home is at the granularity of one hour. Since we do not
know if the meters are installed in commercial, industrial, or
residential buildings, we filter out sources that do not have
typical household power levels and profiles, i.e., peak power
less than 10kW and average power less than 3kW. We also
filter out sources with large gaps in their data. After filtering,
we select 435 homes from the available sources.

Figure 11(a) plots the peak power over all the homes
as a function of the fraction of homes using GreenCharge
and SmartCharge with energy storage. For these experiments
we assume that each home has an available energy storage
equal to half the home’s average daily consumption. Charging
rate of C/4 for the usable storage capacity is assumed. The
figure shows that GreenCharge and SmartCharge are capable
of reducing peak power by roughly 20% when little more
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Fig. 11. With 25% of homes using GreenCharge, the peak demand decreases by 22.5% (a) and demand flattens significantly (b).

than 20% of homes use the system, as long as the homes
randomize when they begin overnight charging. If everyone
begins charging at the same time, e.g., at 12am at night, the
peak reduction decreases to a maximum of only 8%. Even
using randomized charging, if more than 22% of consumers
install GreenCharge or SmartCharge, then the peak reduction
benefits begin to decrease, due to a nighttime “rebound peak”.
Once 45% of consumers use the system the evening rebound
peak actually becomes larger than the original peak. The
same point occurs when only 25% of homes use the system
without randomized charging. ’Net Metering’ represents those
homes which have on-site renewable deployments, however,
they don’t have on-site battery installations for storing this
energy. Hence, the renewable energy is consumed as soon as it
is generated. In contrast to GreenCharge and SmartCharge the
peak savings from ’Net Metering’ increase from 0% to 5.75%
and then flattens out. The reason being, net metering does not
use any on-site battery storage, it simply uses the renewable
energy whenever it is available else the power is drawn from
the grid. Also, as can be seen from figure 12 net metering
effectively flattens out the mid day peaks between 11am and
2pm, however, it does poorly to shave the evening peak
which occurs after 5pm. This is because solar energy harvest
reduces significantly towards sunset. Clearly, battery storage
is required to shave the evening peaks. Another important
observation from figure 12 is that net metering increases the
difference between the minimum and maximum power drawn
from the grid during day time, i.e., between 7am to 7pm, hence
making load on the grid less predictable and sporadic.

All our experiments assume that prices do not change in
response to homes installing battery-based energy storage, i.e.,
a large fraction of homes install the system simultaneously.
A more plausible and realistic scenario is that the rate of
adoption slowly rises with the differential between the peak
and off-peak prices. In this scenario, the gradual load shifting
would alter prices in each rate period. At some point, as
Vytelingum et al.[34] formally show, the price changes would
make the system increasingly less attractive for new users,
as the difference between peak and off-peak prices would
approach zero.

We discuss GreenCharge’s and SmartCharge’s economics
at scale further in §VI. Figure 11(b) shows grid power
usage over time, with 0% and 22% of the homes using
GreenCharge and SmartCharge with randomized charging, and
demonstrates how both approaches cause demand to “flatten”
significantly. Such a peak reduction would have a profound

effect on generation costs, likely lowering them by more than
20% [24]. Finally, with 20% of homes using GreenCharge
or SmartCharge, the increase in total energy usage is only
2%. The result demonstrates that the benefits of flattening
likely outweigh the increased energy consumption due to
battery/inverter inefficiencies.

VI. COST-BENEFIT ANALYSIS

The previous section shows that GreenCharge cuts an elec-
tric bill by 20% with today’s market-based pricing plans,
compared to around a 10% decrease with SmartCharge. In this
section, we first discuss GreenCharge’s return on investment
(ROI), including its installation and maintenance costs. We
ground our discussion using price quotes, primarily from
the altE store (http://www.altestore.com), for widely-available
commercial products.

A. Return-on-Investment

In many instances, homes already have the necessary in-
frastructure to implement GreenCharge. For example, many
homes in developing countries already utilize UPSs because
of instability in the power grid. In addition, homes with
photovoltaic (PV) systems require on-site energy storage to
balance an intermittent supply with demand without the aid
of net metering. Batteries in electric vehicles (EVs) could
also serve as energy storage. In each case, the homes already
include the required infrastructure and battery capacity to
implement GreenCharge. Since the homes would not need
new infrastructure, the ROI is positive in these cases. Below,
we discuss the ROI for homes that do not already have the
necessary infrastructure.

Table II shows cost estimates for purchasing and installing
GreenCharge’s components. For the inverter, we assume
Apollo Solar’s True Sinewave Inverter, which combines an
inverter, battery charger, and transfer switch into a single
appliance. To read battery state and control the appliance,
we attach an additional communications gateway available
for the inverter. Numerous home energy meters are available:
The Energy Detective (TED) is a popular choice and costs
$200. Nearly any server is adequate to support GreenCharge’s
software. We use an embedded DreamPlug server at a cost
of $159 as the gateway in the homes we now monitor. To
hold the battery array, we assume two MNEBE-C 12-battery
modular enclosures. Finally, we estimate $200 for cabling and
a day’s labor at $500 for installation. The total estimated cost,
excluding batteries, is $4871. Of course, GreenCharge’s largest
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Component Total
Inverter $2099.00
Battery Charger -
Transfer Switch -
Inverter Gateway $287.00
Energy Monitor $200.00
Server $159.00
Battery Enclosure $1426.00
Cabling $200.00
Labor $500.00

Total $4871.00

TABLE II
ESTIMATED COST BREAKDOWN FOR INSTALLING SMARTCHARGE’S

SUPPORTING INFRASTRUCTURE.

expenses are its battery array and solar panel installation. We
discuss each below.

Sealed VRLA/AGM lead-acid batteries are the dominant
battery technology for stationary home UPSs and PV installa-
tions, due to their combination of low price, high efficiency,
and low self-discharge rate. By contrast, lithium ion batteries,
while lighter and more appropriate for EVs, are much more
expensive. We use, as an example, the Sun Xtender PVX-
2580L with a 3kWh rated capacity (at a C/20 discharge rate),
which costs $570 [32] and is designed for deep-cycle use in
home PV systems. The battery’s manual specifies its lifetime
as a function of its number of charge-discharge cycles and
the DOD each cycle. We use the data to estimate the yearly
cost of batteries—in $/kWh of usable storage capacity—as a
function of the depth of discharge (Figure 13) amortized over
their lifetime, assuming GreenCharge’s typical single charge-
discharge cycle per day. The usable storage capacity takes
DOD into account: a battery rated for 10kWh operated at
50% depth of discharge has a usable capacity of only 5kWh.
Figure 13 demonstrates that cost begins to increase rapidly
after a 45% DOD, with an estimated cost of $118/kWh of
usable capacity.

While solar panel prices are dropping dramatically, current
prices are $7-$9 per watt for installing solar generation. Since
both the average consumption in our example home (and the
average across the U.S.) is 1kW, it would cost $4000 for a
system capable of producing half the home’s electricity. Of
course, since a solar installation does not produce its maximum
power all the time, our home would likely need a installation
with at least a 4x larger capacity than our desired output. As a
result, to generate half the home’s electricity from solar panels
would cost $16,000-$20,000.

In the U.S., GreenCharge likely qualifies for a Residential
Renewable Energy Tax Credit, reducing its cost by 30%.
Additionally, U.S. state and local governments offer an assort-
ment of tax incentives for energy-efficiency improvements [8],
which we estimate lower costs by 20%. Despite the advan-
tages, today’s lead-acid batteries and solar panels are still
too expensive to produce a positive ROI at current electricity
prices. For instance, while 24kWh of usable storage capacity
saves $91.25 per year using the Ontario TOU rate plan, batter-
ies alone would cost $1416 per year assuming the take breaks
above. However, recent advancements in battery technology
promise to dramatically reduce battery costs in the near future.
Lead-carbon batteries have an expected lifetime 10x longer
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Fig. 13. Amortized cost per kWh as a function of depth of discharge.

than today’s sealed lead-acid batteries at roughly the same
cost [10], [12], [27]. Figure 14 shows the extended lifetime
using data from recent tests conducted at Sandia National Labs
comparing today’s sealed lead-acid battery and a new lead-
carbon battery (the UltraBattery) [27]. In addition, solar panel
prices per installed watt are predicted to drop to $1 per watt
over the next decade.

Lead-carbon batteries combined with modest and expected
price increases (25%) and peak-to-off-peak ratios (25%), as
well as a decrease in solar panel prices, would produce a
positive ROI for GreenCharge in a few years. As Figure 11
shows, enabling only 20% of homes with GreenCharge would
dramatically reduce peak demands, and, hence, generation
costs for all homes, even those that have not invested in the
system. Since all homes benefit from lower prices, utilities
may consider subsidies that spread costs across all consumers,
which for 20% of homes would lower costs by nearly 5X.

Alternatively, utilities might consider modifying their pric-
ing plans to incentivize GreenCharge (and SmartCharge) in
all homes by increasing the fraction of the bill based on peak
usage. While many utilities charge large consumers based
on their peak usage over a day or month [4], residential
bills typically do not include such a charge. Incorporating a
substantial peak usage charge in electric bills would prevent
the large rebound peaks in Figure 11 by directly incentivizing
homes to flatten demand, rather than shift as much demand
as possible to low-cost periods (causing the rebound peak).
With market-based plans that only charge per-kWh, as more
consumers install the system and shift their demand to low-
cost periods, the price difference between the low-cost and
high-cost periods would lessen to reflect the new demand
distribution, thus lowering the ROI and discouraging additional
homes from installing the system. A substantial peak-usage
charge would maintain the financial incentives and continue
to flatten demand (and prevent rebound peaks) as the fraction
of GreenCharge-enabled homes approaches 100%.

A full discussion of GreenCharge’s impact on the economics
of electricity generation is outside the scope of this paper.
However, it is clear that today’s market-based pricing plans
assume that the price elasticity of electricity demand is low,
i.e., changes in price do not have a significant impact on
demand. GreenCharge fundamentally changes this fact by
making demand nearly fully elastic with price.

B. Distributed vs. Centralized

Utilities have already begun to deploy large, centralized
battery arrays to reduce peak usage and integrate more wind
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and solar farms, which require substantial energy storage to
match an intermittent supply with variable demand. However,
distributing battery storage and energy harvesting throughout
the grid has a number of inherent advantages over a centralized
approach. In particular, local energy storage and generation
serves as backup power during extended blackouts, lessening
the economic impact of power outages and promoting a more
stable grid. A centralized system also introduces a single
point of failure. Further, substantial home energy storage and
generation may be a catalyst for implementing microgrids,
where matching supply and demand is difficult without an
energy buffer. Storing and generating energy at its point-of-use
also reduces transmission losses by eliminating losses incurred
from generator to battery array.

Finally, perhaps the most important argument for installing
many distributed battery arrays and energy harvesting de-
ployments in homes, rather than large centralized arrays, is
to encourage distributed generation without relying on net
metering. While today’s PV installations typically use net
metering to offset costs by selling energy back to the grid,
it is not a scalable long-term solution. Injecting significant
quantities of power into the grid from unpredictable and
intermittent renewables has the potential to destabilize the
grid by making it difficult to balance supply and demand.
GreenCharge provides an alternative to net metering to offset
costs in home PV systems that use batteries instead of net
metering.

VII. RELATED WORK

Daryanian et al. [7] first identified the opportunity to exploit
energy storage in real-time electricity markets using a linear
programming formulation similar to ours. However, their prob-
lem formulation ignores many of the battery inefficiencies that
influence the realizable savings. Further, the work does not ad-
dress stochastic demand in residential settings, whereas we de-
velop machine learning techniques to accurately predict next-
day consumption. In addition, we also conduct experiments to
analyze the peak reduction effects of energy storage in the grid
using real data, as well as analyze the ROI for installing and
maintaining the system. Finally, we include renewables into
the system, as well as use a model for predicting renewable
generation, which has not been considered in prior work to
the best of our knowledge.

More recent work explores a similar problem as ours, but
from different perspectives and without renewable generation.
For example, van de ven et al. [33] model the problem as a

Markov Decision Process and claim that there is a threshold-
based stationary cost-minimizing policy. The policy is optimal
assuming that consumption is independent and identically
distributed (i.i.d.). A preliminary evaluation with simulated
demands following an i.i.d. distribution shows cost savings
up to 40%. In contrast, we take a more experimental approach
using traces of real home power usage, solar panel generation,
and market-based rate plans. For the home in our case study,
which has an aggregate power usage close to the average
U.S. home, we show that the optimal savings is never more
than 20% with realistic energy storage capacities (< 60kWh).
Rather than solving the problem with respect to a particular
demand distribution, we distill the problem to a linear program
that uses our prediction model of future consumption levels

Vytelingum et al. [34] and Carpenter et al. [5] both focus
on the economics of storage at scale, which we also discuss.
Vytelingum et al. show that for sufficiently low adoption
rates, the difference between the peak and off-peak prices
approaches zero, reducing the financial incentives for installing
energy storage. Similarly, in parallel with our work, Carpenter
et al. also show that today’s pricing schemes may increase the
grid’s peak demand at scale if prices do not adjust to demand.
The work studies the profitability of a variety of different
pricing schemes, and their effectiveness in decreasing grid
demand peaks at scale. Koutsopoulos et al. [20] explore the
problem from the perspective of a utility operator. In this case,
the utility controls when to charge and discharge battery-based
storage to minimize generation costs, assuming the marginal
cost to dispatch generators increases super-linearly as utilities
move up the dispatch stack to satisfy increasing demand.
In contrast to our problem, the approach is more applicable
to large centralized energy storage facilities. We discuss the
trade-offs between distributed and centralized energy storage
in §VI-B.

VIII. CONCLUSION

In this paper, we explore how to lower electric bills using
GreenCharge by storing low-cost energy for use during high-
cost periods. We show that typical savings today are near 20%
per home with the potential for significant grid peak reduction
(20% with our data). Finally, we analyze GreenCharge’s costs,
and show that recent battery advancements combined with an
expected rise in electricity prices and decrease in solar panel
prices may make GreenCharge’s return on investment positive
for the average home within the next few years.
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